
Statistical aspects of dissipation by Landau-Zener transitions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 4021

(http://iopscience.iop.org/0305-4470/21/21/011)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 11:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/21/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 21 (1988) 4021-4037. Printed in the UK 

Statistical aspects of dissipation by Landau-Zener transitions 

Michael Wilkinson? 
Department of Nuclear Physics, Weizmann Institute of Science, Rehovot, Israel 

Received 1 March 1988, in final form 31 May 1988 

Abstract. This paper considers the effect of slowly varying the parameters X i  of a finite-sized 
quantum mechanical system. The system is excited to higher energies by Landau-Zener 
transitions at avoided crossings; since this increases the energy of the system, it has the 
effect of dissipation of the driving motion. The rate of dissipation depends on the level 
spacing distribution of the system. When the spectral statistics are those of the Gaussian 
unitary ensemble, the rate of dissipation is proportional to X:,  i.e. there is viscous or ohmic 
damping. When the spectral statistics are of those of the Gaussian orthogonal ensemble, 
the rate of dissipation is proportional to X:”. 

1. Introduction 

This paper is concerned with the quantum mechanical description of dissipation in a 
finite-sized system. The type of system being considered is most clearly stated by giving 
a specific example. Consider a billiard with a variable shaped boundary, described 
by some parameters X i ,  and which has chaotic classical motion for all values of X 
(see figure 1). The billiard has quantum mechanical energy levels E , ( X ) ,  and these 
are occupied by a large number of non-interacting fermions with probabilityf, =f(E , ) .  

Figure 1. An example of the type of system under consideration. The system is a chaotic 
billiard with deformable boundaries, described by parameters X ,  , X , ,  . . . . The energy 
levels are occupied by a large number of non-interacting fermions, up to some Fermi level 
E , .  Deforming the boundary produces non-adiabatic excitation of the particles which 
results in a damping of the driving motion. 

t Permanent address: Department of Physics and Applied Physics, John Anderson Building, University of 
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The distribution function f ( E )  decreases rapidly from unity to zero in the neighbour- 
hood of a 'Fermi energy' EF, but the details of f ( E )  will not be important in what 
follows. We imagine that the parameters X i  are coupled to some macroscopic system 
which can be described purely classically. The billiard exerts a force on the macroscopic 
system. If the rate of change of the parameters, X i ,  is small, the dominant contribution 
to the force is given by the adiabatic approximation: 

There are various types of correction to this expression: this paper will discuss the 
calculation of those corrections which cause damping of the macroscopic motion. The 
mechanism of this damping is the excitation of the quantum system to higher energy 
levels. 

The principal results of this paper are concerned with the limit where the rate of 
change Xi  of the parameters is very small. In this case the mechanism of dissipation 
is by Landau-Zener transitions (this was apparently first suggested as a mechanism 
for dissipation by Hill and Wheeler (1953) in the context of the collective model for 
the nucleus). The highly excited energy levels E, exhibit many avoided crossings as 
a parameter X i  is varied (see figure 2). When the gap A E  in an avoided crossing is 
sufficiently small, there is a finite probability of a particle making a non-adiabatic 
transition from an occupied to an unoccupied state. This process was studied by Zener 
(1932) for the case of an avoided crossing in a two-level system. The difference E of 
the two energy levels as a function of X is parametrised by two constants AE and A :  

& ( x )  = ( A ~ ~ + A ~ X ~ ) ' / ~  

(see figure 3). Zener showed that the 
(1.2) 

probability of a non-adiabatic transition is 

X 

Figure 2. The energy levels of highly excited states, E , ,  exhibit many avoided crossings 
as a parameter Xi is varied. Only those avoided crossings with a sufficiently small gap 
have significant probability of Landau-Zener transitions. The damping is therefore very 
sensitive to the level spacing distribution. 
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I * 
X 

Figure 3. An isolated avoided crossing. 

Since the lower-lying energy levels have higher occupation probabilities, these transi- 
tions tend to increase the energy of the system, resulting in damping of the driving 
motion. When the parameter X passes through many avoided crossings, the rate of 
excitation is determined by the statistical distribution of the gap sizes PE, which is in 
turn determined by the level spacing distribution P ( S )  (i.e. the distribution of the 
nearest-neighbour separation of energy levels). The dependence of the rate of dissipa- 
tion on the velocity is calculated in P 2: it is shown that if 

P( S )  cc: S” (1.4) 

for small S, then the rate of dissipation scales as X(”t2)’2:  

(1.5) 
al!? cc n o Y A Y / 2 u ( Y + 2 ) / 2  ( v + 2 ) / 2  1x1 - 
a t  

where no is the density of states and U is the typical size of A. It is known that the 
level-spacing distribution, and other statistical properties of the spectrum, show uni- 
versal behaviour in systems with a chaotic classical limit (Berry 1983, Wilkinson 1988). 
If the system does not have time-reversal invariance (i.e. if there is a magnetic field 
present and there are no geometrical symmetries), it is known that the spectral statistics 
are those of the Gaussian unitary ensemble (GUE)  which exhibits quadratic level 
repulsion ( Y = 2 in (1.3)) (Berry and Robnik 1986). In this case the damping force 

aE 1 F d = - Y  
a t  x 

is proportional to X, i.e. the damping is viscous. In most other cases the spectral 
statistics are those of the Gaussian orthogonal ensemble (GOE), which has linear level 
repulsion ( v  = 1). This weaker level repulsion facilitates the Landau-Zener transitions, 
and causes a larger damping force, proportional to X ” 2 .  

This description of the damping process is only valid when the gap size of those 
avoided crossings at which there is a significant probability of a transition is much 
smaller than the mean separation of the energy levels. From (1.3) this condition can 
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be written 

ficrlXlnicc 1. (1.7) 
When X is large, so that (1.7) is not satisfied, transitions can occur between states 
which are not nearest neighbours. In this case it is possible to calculate the rate of 
dissipation using the Kubo formula (Kubo 1956, Greenwood 1957) and the damping 
force is proportional to the speed X ,  regardless of the nature of the spectral statistics. 
In the semiclassical limit, the matrix elements appearing in the Kubo formula can be 
related to a classical correlation function. The relation between the classical correlation 
function and the dissipative force can also be obtained directly from classical mechanics 
and the Pauli exclusion principle. These results are described in § 3. 

The type of dissipation described here may be relevant to various types of physical 
problems. The most direct application would be to an extension of the Born-Oppen- 
heimer method in molecular physics, to take account of the damping of the vibrational 
motion of the nuclei of complex molecules by radiationless transitions of the electronic 
states. A similar application in nuclear physics would be to the damping of collective 
coordinates describing deformation of a nucleus by excitation of individual nucleons: 
this is the context in which Landau-Zener damping was first suggested by Hill and 
Wheeler (1953). Another possible application of these results is to the electrical 
conductance of very small samples. Section 4 contains a summary of the important 
results and some further comments about possible applications. 

2. Dissipation by Landau-Zener transitions 

This section will calculate the rate of increase of the energy of the driven system due 
to Landau-Zener transitions. For clarity, the calculation is divided into several sub- 
sections. Subsection 2.1 calculates the rate of transition R from one level to another, 
assuming a distribution for the sizes of the gaps of the avoided crossings, P(AE). 
Subsection 2.2 calculates the relation between P( P E )  and the level spacing distribution 
P ( S ) ,  so that the transition rate can be calculated. Subsection 2.3 describes some 
results for estimating the asymptotic slope of the avoided crossings, A. Subsection 2.4 
relates the transition rate R to the rate of damping a E / d t .  Subsection 2.5 summarises 
the important results. 

2.1. Calculation of the transition rate 

The transition rate, R, is the probability per unit time that a particle will make a 
transition to one of the two neighbouring states. To calculate this transition rate we 
must take account of the fact that the gap sizes A E  and slopes A of the avoided 
crossings are randomly distributed. If N ( A ,  A s )  dA dAe is the number of avoided 
crossings encountered per unit length with slopes in the interval [A, A+dA] and gap 
sizes in the interval [ A E ,  AE S ~ A E ] ,  then in the adiabatic limit we have 

R = X low dA lom dAE N ( A ,  A s )  exp -- ( A%)* 
If random matrix theory is applicable to the system, N(A, A E )  should be a universal 
function depending only on the density of states, no,  and the typical size of A, which 
will be denoted by (T. Furthermore, it is expected that A and A &  should be independent, 
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since A is related to the matrix elements of aHIaX, which should have random matrix 
properties. We can therefore write 

N(A, A E )  = n,AP(AE)P’(A) (2.2) 
where P and P’ are universal functions of noAE and A l a  respectively, and P‘ is 
normalised: 

J d x P ’ ( x ) = l .  
0 

It will be shown in 8 2.2 that the gap sizes have a power law distribution for small A s  

P ( A E )  dAE = yn;AE”-‘dAE (2.4) 

(2.5) 

where y is a dimensionless constant. Combining equations (2.1)-(2.4), we find 
R = Ylyn;+I(A(v+2)/2)fj ” / 2 1 X \  ( v + 2 ) / 2  

where the angle brackets denote the average over the distribution of A 
cc 

(2.6) (A(Y+2)/2) = 5 dA A(”+2)/2pt(A) 
0 

and 

I,, = Iom dxx”-’  exp(-m2/2).  

The important cases are Y = 1,2,  where 
I 1 -  - 2 - ’ / 2  I2  = 7 7 - I .  

2.2. Distribution of gap sizes 

Instead of deriving the distribution of gap sizes (2.3) from the level spacing distribution, 
P ( S ) ,  it is easier to carry out the reverse calculation and obtain P ( S )  from P(AE). 
For energies much smaller than the mean separation, the level spacing distribution, 
P(E), is given by 

d E  (2.9) 

where the sum runs over all the avoided crossings encountered in unit length of the 
coordinate X with gap separations AE smaller than E, and E(X)  is the separation 
function (1.1) (see figure 3). Using (2.2), this summation becomes 

m -1 

P(E) d E  = 2 1, dA JOE dAE N(A, A E )  lzl dE. 
E ( X ) = E  

Substituting (2.3), the assumed form for P ( A E ) ,  and using the result 

we find 
E 

2 1 / 2  dE. ( E ~ - A E  ) 
P(E) d E  = 2yn;+I Iom dA AP(A)A-’ 1,‘ dAE A & ” - ’  

(2.10) 

(2.11) 

(2.12) 
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Simplifying, we have 

P ( E )  dE = 2 y K , n , ” + ‘ E ”  d E  (2 .13)  

where 

X ”  
K u  = I,’ y1 - x 2 ) 1 , 2 .  (2 .14)  

In the important cases, v = 1 , 2  

K 1  = 7 1 2  K 2 = 1 .  (2 .15)  

The level spacing distribution normalised to unit mean spacing is therefore 

P (  S )  d S  = 2 y K y S y  d S  = a,Sy dS. (2 .16)  

In the case of ‘chaotic’ systems or disordered systems with extended states, we expect 
the spectral statistics to be those of the Gaussian orthogonal ensemble (for systems 
with time-reversal invariance), or the Gaussian unitary ensemble (for systems without 
time-reversal invariance). These random matrix ensembles and the corresponding 
spectral statistics are described in a reprint volume edited by Porter (1965) .  The 
application of these ensembles to systems with a chaotic classical limit is described 
by Berry (1983) ,  Bohigas et al (1984) ,  Berry and Robnik (1986)  and Wilkinson (1988) .  
The important result in the present context is that when the spectral statistics are of 
GOE type the level spacing distribution is linear for small S ( v  = 1 in ( 2 . 1 4 ) ) ,  and for 
GUE statistics there is quadratic level repulsion ( v  = 2 ) .  The constants a, are as follows: 

GOE v = l  a1 = 7’16 (2.17)  

G U E  v = 2  a2 = r 2 / 3  (2 .18)  

(Dyson 1962). Using these results, we can calculate the dimensionless factor y appear- 
ing in ( 2 . 4 ) .  

2.3. Distribution of slopes of avoided crossings 

The slope A of an avoided crossing is clearly related to the matrix elements of the 
operator ( d g / d X ) .  This operator be!rs no relation to the eigenstates of the Hamiltonian 
H ( X ) ,  and the matrix elements ( d H / d X )  should satisfy the statistical hypotheses of 
random matrix theory (Porter 1965). We therefore expect that these matrix elements 
are independently Gaussian distributed, with a variance (+* which varies slowly with 
E =+(E,  + E,) ,  and P E  = E ,  - E,: 

(2 .19)  

where S,(x) represents a Dirac 6 function smeared out over a suitably chosen range 
of width E. In the GOE case variance of the diagonal matrix elements is different from 
that of the nearby off-diagonal matrix elements: 

E ,  = E,  
(2 .20)  
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where 

GOE P 1 = 2  

G U E  p2=1. 
(2.21) 

The scale size of the slopes is characterised by the variance u2 of the matrix elements 
of (ak/aX), but the probability distribution P'(A) is not Gaussian. In appendix 1 it 
is shown that, in the GOE case, 

GOE 

and in the GUE case 

A2 
2 J r u  

GUE P'(A) dA = -3 exp 

We can now evaluate the moments of A appearing in (2.5). 

(2.22) 

(2.23) 

The results are 

GOE (2.24) 

where the value of the gamma function is r($) = 1.225 41, and 

(2.25) 

Finally, a result will be described which enables the variance u2 to be calculated from 
classical quantities in systems which have a chaotic classical limit. In these cases the 
density of states is given by the Weyl formula (Berry 1983) 

0' 
n -~ 
O- (27rh)d 

(2.26) 

where d is the number of degrees of freedom, and 

R = ddp ddq 6 ( E  - H ( p ,  4)). (2.27) 

The variance of the matrix elements of an operator A which has a classical limit A( p ,  q )  
can be written in terms of the classical correlation function of A(p, q ) :  

I 
W 

(+'(E, 0) = ( 2 ~ h ) ~ - ' R - ~  dt  CA(E, t )  (2.28) I-" 
where the correlation function is given by 

CA(E, t )  = J" ddP ddqA(p, q)A(p(t) ,  q ( t ) ) G ( E  - H ( p ,  4 ) )  (2.29) 

(Wilkinson 1987). Using equations (2.26)-(2.29) it is possible to express the transition 
rate in terms of classical quantities and A only, provided the integral in (2.28) converges. 
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2.4. Rate of dissipation 

The nth state of the system is filled with a probability fn.  The rate of change of fn is 
given by 

dfnldt = (-2L + f n + 1  +fn-dR. (2.30) 

This result assumes a random phase approximation which is discussed in appendix 2. 
This approximation is probably justified in the limit where X is small because the 
avoided crossings which have a significant transition probability are widely separated. 
If the probabilities fn vary slowly with the level number n, we can write 

and (2.30) shows that f(E, t )  satisfies a diffusion equation 

The total energy of the system is given by 

E(t)  = d E  no(E)f(E, t ) E  I 
or, if we consider the case in which the Fermi level is sharply defined, 

g( t )=no(EF) dEEf(E, t ) .  

The rate of increase of the energy of the system due to Zener transitions is 

so that 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

This energy is supplied by the driving motion, and in most cases it is not recoverable, 
so that it represents dissipation of the driving motion. The damping force is given by 

R F --=- 
ax noX* d -  (2.37) 

This force always opposes the direction of the motion. 

2.5. Summary 

In the adiabatic limit (1.7) the rate of dissipation is very sensitive to the level spacing 
distribution. In systems with GOE spectral statistics, which have linear level repulsion, 
our estimate of the rate of dissipation is (combining (2.4), (2.14), (2.15) and (2.24)) 

aE 
a t  

GO€ - = 2 - 5 / 4 ~ r ( ~ ) n o h ' / 2 [ a 2 ( E , ,  O ) ] 3 / 4 ( X 1 3 / 2  (2.38) 
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where a 2 ( E ,  0) is the variance of the matrix elements of a f i / a X .  If the system has 
G U E  spectral statistics, the estimate of the rate of dissipation is 

- .?rfin:cT2(E, 0 ) X 2 .  
aE 
a t  
-- GUE (2.39) 

From (2.37) we see that in this case the damping force is proportional to X, correspond- 
ing to ohmic or viscous damping, whereas in the GOE case the damping force is larger 
and is proportional to X1’2. 

If the system has a chaotic classical limit, with correlation function decaying faster 
than 1/t, then equations (2.26)-(2.29) can be used to express u2 in terms of the 
correlation function of the classical motion. 

3. Rate of dissipation at higher velocities 

The results of § 2 assume that the velocity at which the system is driven is very slow, 
so that (1.7) is satisfied. When the velocity exceeds this limit, the rate of dissipation 
can be calculated from the Kubo formula: § 3.1 gives a brief discussion of this formula 
and the conditions under which it is applicable, which are the opposite of (1.7). 

In systems with a classical limit, the Kubo formula should give the correct rate of 
dissipation in the semiclassical limit, h + 0, since the density of states, no ,  scales as 
Kd,  so that (1.7) is not satisfied. It should therefore be possible to derive the rate of 
dissipation in this limit directly from classical arguments, together with the Pauli 
exclusion principle. This is described in § 3.2. 

3.1. The Kubo formula 

There are many related formulae for electrical conductivity and other linear response 
properties which are known as Kubo formulae (Kubo 1956, Greenwood 1957, Mahan 
1980). The form most relevant to the results of this paper is that described by 
Greenwood (1957) and the discussion below follows the method described in that 
paper. The problem is to calculate a generalised force defined by 

( F ( t ) )  = Tr( p^( t )  ). 
In most discussions this force is an electric current and the conjugate coordinate is 
the vector potential. The density matrix is assumed to have a part which is diagonal 
in the instantaneous eigenstates I n ( t ) )  = I n ( X ( t ) ) ) ,  and a perturbation term which is 
assumed to be proportional to X :  

where the first term is the usual adiabatic approximation (1.1) and the coefficient p 
represents a viscosity, or a conductivity in the electrical context. Following the method 
of calculation described by Greenwood, we substitute (3.2) into the equation of motion 
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for the density matrix, solve for 
for the viscosity is 

and substitute into (3.7). The resulting expression 

n # m  

Here 6, is a delta function broadened over a width E = h / ~ ,  where 7 is the length of 
time over which the perturbation acts. The method of solution assumes that the energies 
E,,, E,  are constant, whereas in fact they depend on X (  t ) .  This assumption is justified 
if E,, - E m  is much larger than the mean level spacing for most of the pairs of levels 
which contribute to the sum, i.e. 

(3.5) Eno = T-' fino >> 1, 

If the occupation probability fn drops sharply at the Fermi level EF, then we can write 

so that the viscosity is 

)(*. = Thn;U2(EF, 0) (3.7) 

where U' is the variance of the matrix elements of a f i / d X ,  defined by (2.18). When 
the system considered has a classical limit, the viscosity can be related to the classical 
correlation function, (2.28) and (2.29): 

no d t C ( E F ,  t ) .  (3.8) )(*.=z -m 

The corresponding formula for the rate of dissipation is 

aE/at  = .irhniu2A2. (3.9) 

Now compare this result with those obtained in § 2. The results on Landau-Zener 
transitions assumed that the energy levels make many avoided crossings as the para- 
meter X varies; the condition for this can be written 

%Tuno >> 1 (3.10) 

where T is the timescale over which the motion occurs. If there are many avoided 
crossings, the condition (3.5) for the Kubo formula to be valid can therefore be written 

niAuh >> 1 (3.1 1) 

which is exactly the opposite of the condition for the Landau-Zener effect to be the 
mechanism of dissipation (1.7). There is a crossover between the two mechanisms 
when u h X n i =  1, when the rate of dissipation predicted by the two approaches has 
the same order of magnitude (compare (3.9) with (2.38) and (2.39)). The fact that the 
dimensionless prefactor is the same in (2.39) and (3.9) appears to be a coincidence. 

3.2. Semiclassical calculation of the dissipation rate 

If the system has a classical limit, it should be possible to relate the rate of dissipation 
directly to properties of the classical dynamics. Many of the earlier results relied on 
the quantum system having random matrix properties, which are associated with 
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systems having a chaotic classical limit. For this reason it will be assumed that the 
classical dynamics is chaotic. 

First consider the semiclassical limit of the conservative force, (1.1). The derivatives 
of the energy levels E, with respect to X can be deduced from the fact that ergodic 
systems have the following adiabatic invariant (Ott 1979): 

I = 1 ddq ddP O(E - H ( q ,  P, X(t)))  (3.12) 

where O is the step function. This invariant implies that the volume of the energy shell 
remains constant for slow changes of the Hamiltonian. The rate of change of energy 
with the parameter X is therefore given by 

If the parameter X(t)  is varied sufficiently slowly, the system will remain in a state 
with the same quantum number, so that aE,/aX = aE/aX. The semiclassical limit of 
the conservative force (1.1) is therefore given by 

aE 
F = I d E no( E )  - ax (3.14) 

where aE/aX is given by (3.13). 
The dissipative contribution to the force comes from the fact that there is a diffusive 

spread of the energy of the particles about the mean value obtained by integrating 
(3.13) (Ott 1979). The rate of change of energy of a particle is given by 

x d E  aH aH 
d t  a t  ax - -  (3.15) 

so that the difference between the change in energy given by (3.13) and the exact value 
is 

for a particle starting at (q, p ) .  The ergodic theorem implies that 

A E  
lim -+O 
T-m T 

(3.16) 

(3.17) 

which justifies the assertion that (3.12) is an adiabatic invariant. The variance of A E  
(averaged over the initial position (q,  p ) )  is given by 

(3.18) 

where C l  is defined by (2.27). Exchanging the order of the integrals over time and 
phase space in (3.18), and assuming that T is much greater than the timescale for the 
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decay of correlations, we have 

(*E( T)') = 1' 
0 

(3.19) 

where T = t l  - tz and C ( E ,  7) is the correlation function of aH/aX,  defined by (2.29). 
The energy of a particle therefore diffuses about the mean value given by (3.13), with 
diffusion constant 

From (2.32) and (2.36) this implies that the rate of dissipation is given by 

(3.20) 

(3.21) 

where the viscosity p is the same as that obtained using the Kubo formula (3.8). 

4. Summary and concluding remarks 

This paper has considered the problem of dissipation in a finite-sized quantum system, 
caused by slowly varying a set of external parameters X, .  When the velocity is small, 
the mechanism of dissipation is by excitation of the system by Landau-Zener transitions. 
This mechanism is very sensitive to the form of the level spacing distribution: if the 
level spacing distribution has a power law with exponent Y (1.4), then the rate of 
dissipation scales as indicated in (1.5). Some plausible assumptions were used to 
estimate the dimensionless prefactor of (1.5) in the cases of GOE statistics (Y = 1) and 
GUE statistics ( Y = 2): these results are summarised in 0 2.5. 

These results are only valid when 1x1 is sufficiently small: when niohIX1-1 
Landau-Zener transitions cease to be the dominant mechanism of dissipation, and the 
rate of dissipation crosses over to a value given by the Kubo formula which is 
independent of the spectral statistics (see figure 4). 

As well as the applications to molecular and nuclear physics described in the 
introduction, it may be possible to devise systems where these results could be tested 
experimentally. The theory described in 0 2 makes two predictions which could be 
tested without a detailed microscopic knowledge of the system. First, the dissipative 
force is proportional to /XI1" for the case of GOE statistics, a result which would 
be hard to explain in any other way. Secondly, if a magnetic field is applied which is 
sufficiently strong to alter the spectral statistics from GOE to GUE, the dissipative force 
is greatly reduced, and is proportional to 1x1. The condition for this is that the field 
should be large enough to shift energy levels by an amount comparable to their spacing. 
Perhaps the absorption of electromagnetic radiation by very small metallic particles 
could provide a suitable system on which to test these predictions. 

Another possible application is to conduction in small metallic rings through which 
a magnetic flux 4 is threaded. The magnetic flux is analogous to the coordinate X,  
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Figure 4. When 1x1 is small, the damping force depends on the spectral statistics: for GOE 
statistics it is non-linear, proportional to and for CUE statistics it is linear (propor- 
tional to 1x1). At larger values of 1x1 there is a crossover to a linear relationship given by 
the Kubo formula. 

and the velocity X corresponds to an EMF induced in the ring: 

v =  d. (4.1) 

The analogue of the force d H / a X  is the electric current: 

(4.2) 

The eigenvalues E , ( 4 )  are periodic in 4 with period e / h  (one flux quantum). Systems 
of this type have been discussed in several earlier papers (e.g. Buttiker et al 1983, 
Gefen and Thouless 1987); usually it is assumed that the wire is effectively one 
dimensional, which implies that E,  ( 4 )  has only one maximum and minimum per 
period. In the (possibly more realistic) situation in which the ring is not one 
dimensional, there will be many avoided crossings per period, and the results of this 
paper may be applicable. The nature of the dissipation would then depend on the 
spectral statistics. The eigenvalues of an essentially similar type of system (a chaotic 
billiard with a magnetic flux 4 concentrated at a point within the boundary) have 
been investigated by Berry and Robnik (1986) and their results are also expected to 
apply to the conducting loop. The spectral statistics are those of the Gaussian 
orthogonal ensemble (GOE) when 4 is an integer or half-integer number of flux quanta, 
but quickly transform to unitary (GUE) statistics when C$ is shifted away from these 
values. The current would apparently therefore satisfy Ohm’s law even when Landau- 
Zener transitions are the mechanism for dissipation. 
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Appendix 1 

This appendix will calculate the dependence of the density of avoided crossings, 
N ( A ,  A E ) ,  on the slope parameter A, in the limit where the gap A &  is small (only in 
this limit is the asymptotic slope A well defined). 

The method is as folloys. We assume that the energy levels E, and the matrix 
elements of the operator ( d H / d X )  have been evaluated at X = X , .  Using these values, 
we can calculate the position of the nearest avoided crossing to X ,  for pairs of energy 
levels which are very close together (for which degenerate perturbation theory can be 
applied). The density N(A,  A & )  is the probability that an avoided crossing of slope 
A and gap AE lies between X ,  and X,+dX, divided by the increment dX:  if A is the 
displacement of the position of the avoided crossing from X , ,  then 

N(A’, A E ’ )  dA‘ dAE‘ 

= lim P[O<A <dX,AE‘<AE<AE’+dA&’,A’<A<A’+dA‘] .  ( A l . l )  

In order to calculate the probability appearing on the RHS of ( A l . l )  it is necessary to 
know how the parameters A, P E ,  A des:ribing the avoided crossing are related to the 
eigenvalues E,  and matrix elements (dH/dX), , , , ,  and also the probability distribution 
of these latter quantities. Consider first the relationship between the parameters of 
the avoided crossing, and the energy levels and matrix elements. Assume that the 
eigenvalues En and E,+, are very nearly degenerate at X , .  In the neighbourhood of 
X o  the behaviour of these two energy levels can be described by degenerate perturbation 
theory: the energy levels are eigenvalues of the 2 x 2 matrix 

dX-0 

.=[;;I e!] 
the matrix elements of which vary linearly in X :  

ah e -  = e,+ e ; ( X  - X o )  = E,  + (z) ( X  - X o )  
nn 

(A1.2) 

(A1.3) 

e+ = e,’+ e:(x - X o )  = E, + (A1.4) 

h = h , ( X - X , ) =  (A1.5) 

where the energy levels and matrix elements on the RHS of (A1.3)-(A1.5) are evaluated 
at X = X o .  The difference between the two eigenvalues of (A1.2) is given by 

A & ( X )  = (e2+41h12)1’2 (A1.6) 

where 

e = e+ - e -  = e, + e , ( X  - X o ) .  (A1.7) 
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Equation (A1.6) should be compared with the equation defining the parameters of the 
avoided crossing 

A E ( X ) = [ A E ~ + A ’ ( X - X ~ - A ) ~ ] ” * .  (A1.8) 

Substituting (A1.3)-(A1.5) into (A1.6), and comparing with (A1.8), we find the follow- 
ing expressions for the parameters of the avoided crossing: 

A = (e:+41h,/2)1’2 (A1.9) 

A = eoel/A2 = eoel/(e:+41h,J2) (A1 . lo)  

A s  = (e: - A2A2)”* = 2(h,/eo/(  e: + 41h,12)1’2. ( A l . l l )  

Next consider the probability distribution of the quantities e,, e,, h ,  appearing in 
(A1.9)-(Alel1).  If random matrix theory is applicable to the Hamiltonian H(X), then 
the matrix elements of (a8/aX) are independently Gaussian distributed, as described 
in 8 2.3. In the GOE case, we see from (2.19)-(2.21) and (A1.3)-(A1.7) that e, and h,  
are Gaussian distributed with variances 4u2 and U’ respectively: 

P (  e,) de, = - 1 exp( -2) 
2J257u 8 U* 

J257u 
1 

P(h,)dh,=-exp 

(A1.12) 

(A1.13) 

In the GUE case, the off-diagonal matrix element h is complex, and the real and 
imaginary parts of h,  are independently Gaussian distributed, each with variance fu’. 
The probability distribution of e, is just the level spacing distribution, given by 
(2.16)-(2.18). 

Given (A1.9)-(Ala11) and the probability distributions for e,, e, and h ,  the RHS 

of ( A l . l )  can now be evaluated. In the GOE case 

N(A’, AE’) dA’dAE’ 

= lim ‘1 de, de, 1 dh, P ( e , ) P ( e , ) P ( h , ) G ( A ’ - A ( e , ,  e,, h , ) )  
AX+, AX 

x G(A.s’-A&(e,, e,, h , ) )  

x e ( A ( e o ,  e, ,  h,))e(AX-A(e,, e , ,  h , ) )  dA’dAs‘ 

where 8(x) is the unit step function. Taking the limit AX+O 

N(A’, AE’) dA’ dAe‘ 

(Al .  14) 

=I de, j de, j d h ,  P(e,)P(e,)P(h,)S(A’-A) 

x G(PE’-AE)G(A) dA’dAE’ (A1.15) 

where A, AE, h are functions of e,, e,, h ,  given by (A1.9)-(Alal1).  To calculate the 
A’ dependence of N(A’, AE’), it will be useful to change the variables e,,  h ,  to polar 
coordinates r, 8: 

(A1.16) e, = r cos 0 h ,  = =jr sin e. 
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In the new variables (A1.15) becomes 

N(A’,AE‘)=constant x 

x S(AE’- e, sin 8)S(e,  cos 8 / r ) ,  

Using the result 

r 
e0 

S(e, cos e /  r )  = - S(( 6 - :T)  mod T )  

(A1.17) becomes 

N ( A ‘ ,  AE‘) =constant x de, P(eo)eUIS(AE’- e,) 

XI drr2exp(-$)6(At-r). 

(A1.17) 

(Al .  18) 

(Al .  19) 

Thus in the GOE case 

N ( A ,  A & )  = constant x A’ exp -- (A1.20) 

since P ( e o )  is proportional to e,. Comparing this result with equation (2.2), we see 
that the normalised distribution P’(A) is given by 

( tz) 
as claimed in § 2.3 

A similar calculation shows that in the GOE case 

N(A, A E )  = constant x AeA3 exp 

so that in this case 

A2 A’ 
P‘( A) = - 

2JTa3 

(A1.21) 

(Al.22) 

(A1.23) 

Appendix 2 

The results of 0 2.4 assume that the occupation probabilities behave classically; if P 
is the probability of a transition between levels n, n + 1 when X changes from Xo to 
X ,  + AX, then the occupation probabilities transform as follows: 

(A2.1) 

This assumption is not justified in the case of a single avoided crossing, because of 
quantum interference effects: initially, at X , ,  the two-level density matrix is given by 

“=Pi‘ ;). (A2.2) 
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The transition from X o  to X o + A X  is described by a unitary evolution operator 

(A2.3) 

where a, p are complex numbers, and the transition probability is 

P = 1p12. (A2.4) 

After the avoided crossing, at Xo+ AX, the final value of the density matrix is 

(A2.5) 

where 

A+1= ( 1 - P)fn+1+ psn + 2 4  + X E P  (A2.6) 

etc. The final two terms in (A2.6) make this equation different from the classical result 
(A2.1). 

When there are many avoided crossings between a large number of states, the 
expressions corresponding to (A2.6) will contain many of these quantum interference 
terms. In § 2.4 it is assumed that these terms have random phases, so that they combine 
incoherently and can therefore be neglected. 
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